
HUM AM ILL) REPORT DOCUM~ENTATION PAGE,
AD-A204 4~~TF~c b. RESTRICTIVE MARKINGS 1AI.

F- -A- :CTE3. DISTRIBUTION IAVAILAILITY OFREPORT

2b. DECLASSIFICATIONI DOWNGRAI V I' 1 6M ApprovedraCo ili~c ol6ase;

distribut iOuI unI Imitede
.PERFORMING ORGANIZATION RE MBER(S) D ]S OIO1AIN REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6bOFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

LuinaState University (ifapplicable) AFOSR/NH
6c ADRSS(City. State. and ZIP Code) 7b AHfWGNN, State, and ZIP Code)

Computer Science Department lS1
Baton Rouge, Louisiana 70803 BolgA D 2031204

Ba. NAME OF FUNDING /SPONSORING 8 b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicabl#)

AFOSR I Nm APOSR-87-0 160
Sc4JOJ~iy.State. and ZIP Cod#) 10. SOURCE OF FUNDING-NUMBERS

PROGRAM PROJECT ITAS14 IORK UNIT
Bldg 410 ELEMENT NO. NO. 1NO- ACCESSION NO.
Boiling AFB DC 20332.4448 LQF I20 ~ l

11. TITLE (include Security Classification) 11QF20

Parametric Analysis gf Queueing Networks with Blocking
12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S. PAGE COUNTJ
FnlIFROM 4/5TO 8/1 5/11/88 7 2

16. SUPPLEMENTARY NOTATION

11?. COSATI CODES I8. SUBJECT TERMS (Continue on reverse it necessary and identify by hlock number)
FIELD GROUP SUB*GROUP19 BTAT(otiu Lnrvreif eesr n dn

19~~~~~~~~~~~~ ABTAT(otneo ees tncsayadietify by block number)

SQueueing networks with blocking have experienced a dramatic increase in their importance

regarding performance evaluation of computer systems and communication networks.
Parametric Analysis is very interesting for cases in which only one station (e.g., a CPU)
in a queueing network model is to be analyzed under various system washload. In order
to execute parametric analysis of queueing networks with blocking the problemX "Computation
of the Throughput Values of the Finite Capacity Subsystem"-is solved. The accuracy of the
method has been validated by simulation of several test cases.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIEDIUNLIMITED E3 SAME AS RPT 03 DTIC USERS VIcs.

22a. NAME OF RESPONSIBLE INDIVIDUAL 2Zb.TEPH cu Ara# Code) 2 IcE SYMBOL
*Ar~t y~f Dr. Abraham Waxman ELPMN1(!0cu ICE

DO FORM 1473.84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF 'H15 PAGE
All other editions are obsolete.N



AOE-Th. 89-0068

Final Report on the Project

.PApAME-IMC ANALYSIS OF QUEUEING NEIWORKS ATH BLOCKING"

AFOSR-87-0160

I. F. Akyildiz
Computer Science Department

Louisiana State University
Baton Rouge, LA 70803

1. In the first step of the project we had to verify the suggested algorithm, (Throughput Analysis of

Blocking Networks), described in the proposal on pages 7, 8 and 9, to be accurate. We studied

several test examples and compared our results with simulaqtion obtained by IBM-RESQ simula-

tion package. The study showed that the algorithm is very accurate. The results obtained showed

deviations from the simulation counterparts on the average 41c The paper, (1], where this algo-

rithm is described in detail has been accepted by IEEE Transactions on Computer" in October

1987. The paper will appear in November 1988 or March 1989 issue.

2. While we were working on the validation of the throughput algorithm mentioned above, we

developed another new throughput algorithm for blocking queueing networks having stations with

general service time distributions and FCFS scheduling disciplines. The research results obtained

in this part are so significant that the paper, [2], was accepted into "Performance 87" Conference

where the acceptance rate was only 25%. We attended the conference in Brussels/Belgium in

December 1987 and presented the paper.

3. The problem of determining the capacity of the composite station, section 3.2. of the proposal,

has also been attacked and solved partially. Some ideas have been described in [3] where a com-

puter network with local and global window flow control is analyzed. We suggest som1 formulas

for the computation of the capacity of the composite (flow-equivalent) station. However, we real-

ized that the formulas do not perform very accurate for all cases. There is still some need for

89 2 15 '147
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investigation of this part. The paper 13] was accepted to the INFOCOM 88 Conference. We

attended the conference in New Orleans in March 1988 and presented the paper.

There is another type of blocking which is known as "Rejection Blocking" in the literature. In this

case the blocking occurs when a job completing service at station i attempts to join destination station

j. If station j is full at that moment, the job is rejected. The rejected job goes back to the server of the

station i and receives another round of service. This is repeated until some job completes a service at

station j and a place becomes available. This blocking type has been used to model systems such as

production systems and telecommunication systems. In particular, in token ring networks, the station

which has the token, may transmit. In case of nonsuccessful transmission the token comes back to the

station which retries the transmission.

Within this project we also attacked queueing networks with this type of blocking and obtained the

results described below:

1. In 14] we obtained an exact product form solution for equilibrium state probabilities for single

class closed rejection blocking networks which have reversible routing. An algorithm is given for

computation of performance measures. For nonreversible networks we found out that the state

space of a blocking queueing network is isomorphic to the state space of a nonblocking network

under a particular condition. This paper was accepted into the GI/NTG Conference. We attended

the conference in Erlangen/West Germany in September 1987 and presented the paper.

2. In [5] we investigated open, mixed and closed queueing networks with multiple job classes, rever-

sible routing and rejection blocking. Jobs could change class membership and load dependent

general service time distributions were allowed. We prove that the equilibrium state probabilities

have product form. The solution implies insensitivity in this kind of blocking networks, i. e. the 10

distribution of the jobs in equilibrium, irrespective of their remaining service times. This work is

also presented at the Conference "Analysis and Control of Large Scale Stochastic Systems", Chapel

Hill, NC, May 23-25, 1988.
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2. In [] we studied the same model as in 15). Using the product form of the equilibrium state dis-

tribution obtained in (5], we derive exact algorithms to compute performance measures, such as

mean number of jobs and throughputs.

3. State-dependent routing is a very important issue in computer systems and communication net-

works. For particular infinite capacity networks there exist solutions in the literature. However,

considering the state dependent routing with the blocking phenomenon in queueing network

models, makes the analysis more complex. In (71 we attacked this problem and solved it for cen-

tral server models with multiple job classes. Using the concept of job local balance, we prove that

the equilibrium state probabilities of these networks take a modified product form solution. We

also develop an algorithm for the computation of performance measures, like throughputs and the

mean number of jobs, is given.
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1. Introduction

Queueing networks have a great popularity as models of computer systems since the early seventies, because

they allow the modeling of multiple independent resources such as CPU's and I/O devices and the sequential use of

these resources by different jobs. The basic results of queueing network theory were given by Jackson,

Gordon/Newell [JACK63, GORD67a] where they showed that the solution of open and closed queueing networks

with single job class, exponentially distributed arrival and service times, First-Come-First-Served queueing discip-

lines at all stations have a product form. This product form implies that the equilibrium state probabilities consist

of factors representing the states of the individual stations. As a result the individual stations behave as if they were

separate queueing systems. Baskett, Chandy, Muntz and Palacios [BCMP75] extended the results of [JACK63,

GORD67a] to obtain product form solutions for open, closed and mixed queueing networks with different job

classes, nonexponential service time distributions and different queueing disciplines such as First-Come-First-

Served (FCFS), Processor Sharing (PS), Last Come First Served Preemptive Resume (LCFS-PR).

Product form queueing networks (also known as BCMP or separable networks) have proved invaluable in

modeling a variety of computer and communication systems. They are flexible enough to represent adequately many

of the features arising in such applications. They have not, however, been able to provide much insight into the

phenomenon of blocking, because all algorithms for product form networks are based on the assumption that the

stations have infinite capacities. If the stations have finite capacities, blocking can occur in the network.

Various types of blocking have been considered in the literature so far. These blocking types arose out of

various studies of real life systems. We classify the blocking'ietworks as "Classical Blocking" and "Rejection
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Blocking" networks. In the first case, classical blocking, blocking occurs when a job completing service at station i

cannot proceed to stationj because station j is full. The job is forced to wait in station i's server until it is allowed to

enter the destination stationj. Station i's server stops processing until stationj releases a job. This blocking type has

been used to model systems such as production systems and disk 1/0 subsystems. In the second case, rejection

blocking, blocking occurs when a job completing service at station i attempts to join destination station j. If station j

is full at that moment, the job is refused. The rejected job goes with a certain probability (which we will call the

rejection probability) back to station i's server and receives a new service. This is repeated until some job completes

a service at stationj and a place becomes available. This blocking type has been used to model systems such as pro-

duction systems and telecommunication systems.

In recent years there has been a growing interest in the development of computational methods to analyze

queueing networks with blocking. The interest developed primarily from the realization that these models are useful

in the study of system behavior of computers and communication networks, in addition to providing detailed

descriptions of several computer-related applications.

Most of the previous work is based on investigating "Rejection Blocking" in both open queueing networks

[KONH76,77] and closed queueing networks [BALS83, GORD67b, HORD81, PfTT79, SURI841. Konheim/Reiser

[KONH76,77] propose an algorithm for the solution of an open system consisting of two single server stations with

exponential service time distributions. It also permits a feedback from the second station to the first station's queue.

Pittel [PITT79], Hordijk/Van Dijk [HORD8I) and Balsamo/Iazeoalla [BALS83] have shown that the equilibrium

state probability distribution has a product form, given that the "reversibility" condition holds in closed queueing

networks with rejection blocking.

The Suri/Diehl (SURI84] study examined closed tandem queueing networks with finite station capacities in

which the first queue has a capacity larger than the number of jobs in the system. By application of Norton's

Theorem [CHAN75], they reduce (N-1) stations to a single station with a variable size queue capacity and obtain a

two-station network that is easy to analyze. An approximation algorithm is derived for the mean sojourn time of a

job, assuming exponentially distributed service times. The main disadvantages to this technique were that validation

tests were restricted to networks with very small populations and their algorithm is restricted only to serially

switched stations.
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"Classical Blocking" networks have also been investigated extensively in recent years [AKYL85a,b,c,d,

PERRSI, PERR86, TAKASO]. In [AKYL85a] we studied two-station closed queueing networks with classical

blocking and multiple server stations. We have shown that the equilibrium state probability distributions of such

blocking systems are identical to those of a two-station closed queueing network without blocking. In (AKYL85b]

we show that the throughput of a blocking network with K total number of jobs is approximately equal to the

throughput of a nonblocking network with an appropriate total number of jobs le, which can be easily calculated. In

(AKYLS5c] we introduce an approximation algorithm for obtaining the throughput and mean queue length of closed

exponential queueing networks with blocking. In [AKYL85d] we extend the well-known mean value analysis algo-

rithm [REIS80] to single server queueing networks with blocking. The approximation is based on the modification

of mean residence times due to the blocking events that occur in the network.

Takahashi, Miyahara and Hasegawa [TAKA80] developed a method for approximate analysis of open queue-

ing networks with classical blocking. Each station is treated as an M/N/I finite capacity queueing system whose

arrival rate and mean service time are expressed in terms of the blocking probabilities. These probabilities are in

turn expressed in terms of the arrival rates and mean service times yielding a set of N simultaneous non-linear equa-

tions whose solution yields an approximation for blocking probabilities. Approximations for other performance

measures can be obtained from these probabilities. However, only a very limited accuracy assessment was per-

formed.

Perros [PERR81] considered a general class of open exponential queue networks consisting of n (n>2)

queues in parallel being serviced by servers who form a hierarchical structure. Blocking of a server occurs each

time the server completes a service. The server remains blocked until its blocking unit departs from the network

having received service by all the other servers to which this server is linked. Approximate and exact results for the

utilization of a station were obtained. Perros/Altiok [PERR86] analyze open queueing networks with exponentially

distributed service times. Their work is based on communication networks in which each station is serially switched.

A Cox distribution for each station is developed in which the second phase represents the blocking phase of the

corresponding station. Blocking probabilities are determined using an iterative formula.

Several other investigators in recent years have published results on queueing networks with rejection as well

as classical blocking. An excellent bibliography concerning qoueing network models with blocking is given by
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Perms [PERR84]. Our literature review suggests that existing or proposed methods either contain disadvantages

(e.g., long run times and/or memory space) and/or restrictions (only two-station or tandem network solutions) or

provide approximate results which differ widely from the exact values. The blocking network models which have

been investigated so far have the following additional limitations:

i) All service time distributions are exponential.

ii) The queueing discipline at each station is basically FCFS.

iii) All stations may have single (load independent) servers.

In this proposal we will attack these limitations and propose new solutions for closed queueing networks with

blocking.

2. Model Assumptions

We consider closed queueing networks with N stations and K total jobs. Each station in the network may

have the following four station types:

*Type la. [ M IM / I -FCFS

* Type lb. [ M / M /lid - FCFS J (ld: load-dependent server; allows multiple servers)

oType2.[•/G /I-PS ]

oType3.[o/G/IS -. ]

*Type4.[/G ILCFS-PR

Each station of Type Ia or Type lb has exponential service time distribution and of Type 2,3,4 general ser-

vice time distribution with mean values 1/± for i = 1,...,N. The service rate of Type lb station is load dependent

.(). Note that four types of stations are motivated by some practical considerations. Type 1 stations are useful in

many instances (secondary memory units, input-output devices, etc.). Type 2 stations are, in many cases, a reason-

able representation of the CPU allocated in quanta; the processor sharing discipline is an idealization with a quan-

tum of "infinitesimally small" (in fact, zero) duration and no overhead associated with switching from one job to the

other. A Type 3 station represents well terminals in a time-sharing system. Type 4 stations can be used to represent

stacks in data structure models.
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Each stain also has a fixed finite capacity M where M = (queue capacity + 1), (for i 1,2,...,N). Cases

in which the stations can have infinite capacity are also allowed. (Mi = cc ), (for some i = 1, 2, .., N). Any sta-

ton whose capacity exceeds the total number of jobs in the network can be considered to have infinite capacity. A

job which is serviced by the i-th station proceeds to the j-th station with probability p 1 , (for i , j = I , 2, • N),

if the j-th station is not full. That is, if the number of jobs in the j-th station, kj, is less or equal to M, for

j=l,2,....N. Otherwise, the job is blocked in the i-th station until ajob in the j-th station has completed its servicing

and a place becomes available.

Furthermore, we assume that

N

K < M ()

which implies that the total number of jobs K in the network may not exceed the total station capacity of the entire

network.

One of the most important problems to realize regarding blocking queueing networks is that finite station

capacities and blocking can introduce the problem of system deadlock. Deadlock may occur if a job which has

finished its service at station i's server wants join station j, whose capacity is full. That job is blocked in station i.

Another job which has finished its service at j -th station now wants to procced to the i -th station, whose capacity is

also full. It blocks station j. Both jobs are waiwi' for each other. As a result a deadlock situation arises. In

(AKYL86a] we have demonstrated the necessary conditions for a closed queueing network with single job class to

be deadlock free. The following assumption states that a closed queueing network containing finite station capaci-

ties is deadlock free if and only if for ench cycle C in the network the following condition holds:

K < I At, (2)

Simply stated, the total number jobs in the network must be smaller than the sum of station capacities in each cycle.

Since tandem queueing networks have only one cycle, this condition, equation (2), corresponds to equation (I).

Equation (1) is a sufficient condition for tandem networks to be deadlock free.

With these assumptions we obtain the queueing network model, classified as classical blocking which will be

the object of our investigation.

• • .,i I I-
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3. Norton's Theorem Application on Blocking Queueing Networks (PROPOSED CONCEPT I)

The parametric analysis is based on an application of Norton's Theorem from electrical circuit theory to

queueing networls. Chandy, Herzog and Woo [CHAN75] showed that Norton's Theorem provides an exact

analysis of queueing networks, if such networks have a product form solution. We explain this concept by consid-

ering a closed queueing network model with K jobs and N = 12 stations shown in Figure 1.

Figure 1.

With this queueing network model we can construct an equivalent network in which we arbitrarily select a

station N, and replace the other (N - 1) stations by a single station, called the composite (flow-equivalent) station

as shown in Figure 2.

"composite station"

Figure 2.

Let 14(k) be the composite mean service rate, where k is the number of jobs at this composite station. These

composite mean service rates p, (k), (for k=l,...,K), are determined by analyzing a modified version of the given

network, in which the selected station N has been shorted as shown in Figure 3.
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3 4

Figure 3.

The mean service time of that station l/g is set equal to zero and the throughputs X(k), of the shorted system

for all jobs k=I,2,..,K are calculated. These computed throughputs through the shorted network X(k), are set

equal to the composite mean service rates p, (k). The solutions of the network consisting of the selected and com-

posite stations are identical to those of the originally given network model.

The parametric analysis of Chandy, Herzog and Woo [CHAN75] is very interesting for cases in which only

one station (e.g., a CPU) in a queueing network model is to be analyzed under various system workload.

The parametric analysis of blocking queueing networks is executed as follows:

3.1. Computation of the Throughput Values of the Subsystem

3.2. Determining of the Composite Station Capacity

3.3. Analysis of the Two-Station Load Dependent Network

3.1. Throughput Analysis of Blocking Networks

We already have an algorithm to calculate the throughput of a blocking network with single server stations

EAKYL85b,c]. Here we propose an extension of that algorithm for blocking networks with different station types.

The basic concept is that the state space of the blocking queueing network with K total number of jobs is

transformed into the state space of a nonblocking queueing network with R total number of jobs. The number of

states in both networks should be approximately the same, if not identical. This would indicate that Markov

processes describing the evolution of both networks over time have an almost identical structure. That, in turn,
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would guarantee that the throughputs of both systems are almost equal.

The following steps are executed in order to compute the throughput values in queueing networks with block-

ing.

3.1.1. Determine the number of states in blocking queueing network.

3.1.2. Determine the total number of jobs / in the equivalent nonblocking queueing network.

3.1.3. Analyze the nonblocking queueing network with K jobs to obtain the throughput values which are

equal to the throughput value of the blocking network with K jobs.

3.1.1. Determine the number of states in blocking queueing networks

As previously mentioned, in blocking networks each station has a capacity limit, which indicates that only a

certain number of states can be feasible. The feasible states for blocking networks are obtained by realizing that the

number of jobs in the i-th station ki may not exceed its capacity Mi , k < At.

Blocking events which occur in networks with finite station capacities must also be taken into account. There-

fore, the m, (number of servers) neighbors of the feasible states are included, representing the blocking states.

Whenever a transition occurs from one state to another state in which the capacity limit of a station would be

violated, we assume that the transition causes a blocking action in the network and that the state entered is a block-

ing state. In reality, the job still resides in the source station. All the other states are infeasible and are cancelled.

Using this method we obtain a sub-state space for the blocking network. From the reduced state space we can

obtain the number of states Z' of the blocking network, which is the sum of feasible states and blocking states.

Since the number of states Z' can be very large for general networks we cannot draw the state space, eliminate the

nonfeasible states cr count the total number of feasible states and their neighbors as blocking states in an efficient

way. In order to directly obtain the number of states Z in queueing networks with blocking, we have developed an

efficient convolution algorithm [AKYL5b,c] which is applicable only to networks containing Type 1 a stations. We

must find an efficient algorithm which provides the number of states Z (the feasible states and their neighbors as

blocking states) in closed queueing networks with four different finite capacity station types.
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3.1.2. Determine the total number otJobs I? in the equivalent nonblocking network

Our primary objective is to find an equivalent nonblocking network which has the same number of states and

the same state space structure as the blocking network. In general, the state space of the blocking network cannot be

transformed bijectively into the state space of an equivalent nonblocking network. However, the number of states in

both systems may be equal or almost equivalent. This would imply that both systems have the same behavior and

the throughputs of both systems are almost identical. Assume that the number of states Z' (feasible and blocking

states) in the blocking queueing network is obtained somehow. The goal is to find a total number of jobs K in an

equivalent network with infinite station capacities which will provide almost the same number of states, Z, as in the

blocking network. We then find an appropriate total number of jobs K in the equivalent nonblocking network such

that Z will be approximately equal to Z'.

Since the number of states in both systems will be equal or almost equal, it implies that the Markov processes

describing the evolution of both networks have approximately the same behavior. Consequently, the throughput of

the equivalent nonblocking network XvB (Ak) is almost equivalent to the throughput of the blocking network X# (K).

3.1.3. Determine the throughput of the equivalent nonblocking network

By analyzing the equivalent nonblocking network with K total jobs using a product form algorithm such as

mean value analysis, [REIS80], we obtain the total throughput XNa(k). This is almost identical to the total

throughput X5 (K) of the blocking network with K total number of jobs (AKYL8S5b.

X8 (K) =XNg (k) (3)

Note that we do not need any other performance measures than the throughput of the subsystem. By varying the

number of jobs in the subsystem, from I to K, we can obtain ),(l), X,(2), " , XB (K). Note that the throughput

values Xg (k) for k = 1,..,K for the blocking network are approximate. Consequently the parametric analysis for

blocking networks will provide approximate results.

3.2. Determining the Capacity of the Composite Station

The given system has been reduced to a two-station blocking network. The service rate of composite station

4,.(k) is load-dependent, and set equal to the computed throughputs X,(k) for k = 1,...,K. The major problem
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which arises is the capacity of the composite station. Initially, we define the capacity of the composite station as:

M = M s  (4)

where a represents the subsystem.

Our experience shows that this overestimates throughput, since the shorted station can be blocked in the

actual network with less than M, jobs in the subsystem a.

Another possibility is using a capacity weighted by the transition probabilities from the shorted station i to the

stations in the subsystem:

M = M, p., (5)
ito

However, we have discovered that this underestimates the throughput.

Note that Suui/Diehl [SURI86] realized also this fact and solved this problem by constructing so-called

"views" as seen by the previous station. They assume that the shorted station i must have infinite capacity. The

"view" seen by station / is for k jobs in the successor stations sometimes sees the station i as blocked and some-

times unblocked. ius, the shorted station i sees a finite buffer of variable size k in the composite station. They

introduce a so-called variable buffer size model which represents the view seen by the shorted station i. An iterative

formula is used to compute the views. There are some limitations in their work. The model is restricted to single

server tandem networks, in particular, the job flow can only be in one direction. The network cannot have arbitrarily

switched stations. Another limitation is that the shorted station must have an infinite capacity. Their work will

definitely help us in our investigations.

33. Analysis of the Two-Station Load Dependent Network

In [AKYL85a] we have shown that two-station closed queueing networks with blocking have an exact pro-

duct form solution. The solution concept is based on the transformation of the state space of the blocking queueing

network into a state space for a nonblocking network. The state space of two-station queueing networks is one-

dimensional. It is easy to find an equivalent nonblocking network which has exactly the same structure as the block-

ing network. In (AKYL85a,b] we have proved the following theorem:

Theorem. For a two-station closed queueing network with classical blocking there exists an equivalent two-station

closed queueing network without blocking having the same stzcture. The equilibrium state probabilities p(k 1, k 2)
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for the blocking network are computed by the product form solution for the equivalent nonblocking network.

In the load-dependent case the following problem can cause the results for two-station network to be only

approximate. State transitions of the blocking and equivalent nonblocking network do not agree. This will be

explained by a numerical example. Assume a two-station network with K = 6 jobs are given. The first station has

the capacity M I = 4 and the second station M 2 = 3. The service rate of the first station is load-independent ig, where

the second station has load-dependent service rates p2(k). The state space diagram for the above network is:

{C A (2) X{.3) C( 4) Xc() Xc{6)

Figure 4.

By considering the station capacities the following sub-state space is obtained shown, in Figure 5, containing the

feasible states and the blocking states (denoted by ) for the blocking network.

Xc(2) Ac(4)

Figure 5.

Now we find a nonblocking network with an appropriate number of jobs k which provides the same state

space structure as the blocking network. Since tWere are Z" = 4 states in Figure 5, we find that/K = 3. The state

space for/g =3 jobs is shown in Figure 6.

IJe 3,0

Figure 6.

However, the transition rates between states in Figure 6 and 5 do not agree. This can cause the results to no

longer be exact. We can attempt to overcome this problem by having the same transitions between the states of the
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nonblocking network ma shown in Figure 7.

Figure 7.

Figure 7 and Figure 5 have exactly the same structure and the same transition rates. On the other hand, since

we have a network with load-dependent service rates, transition rates of Figure 6 are more realistic than those of

Figure 7. We will investigate further on which diagram should be analyzed, and explore the possibility of extending

our exact algorithm (AKYL8Sa] to hadle the "load-dependent" case.

4. Extended Parametric Analysis of Blocking Queueing Networks (PROPOSED CONCEPT [)

Some papers extending Norton's Theorem for queueing networks with infinite capacity have been published

in the recent years. Kritzinger/van Wijk/Krzesinski [KRIT82] have extended the work of [CHAN75] to closed,

open and mixed queueing networks with multiple job classes. BalsarIolazeolla [BALS82] partition a network

with N stations and K jobs into two subsystems where the first subsystem contains the stations whose behavior is

to be studied and the second subsystem represents the uninteresting part, i.e., stations whose behavior is not of

interest. Their method is based on the matrix of the transition probabilities. They eliminate one uninteresting station

by setting its mean service time equal to zero, and obtain a new transition probability matrix for the jobs. They

repeat this elimination procedure for the next uninteresting station and construct a new transition probability

matrix for the jobs. This elimination procedure must be repeated and a new transition probability matrix must be

constructed for each staion as they want to eliminate. This method is complex and requires a large amount of com-

putation time for large queueing networks.

We will extend the parametric analysis of blocking queueing networks as proposed in section 3, in which a

queueing network model can arbitrarily be partitioned into S disjoint subnetworks, in short form SNIV (for

j = 1,2,.,S), each containing multiple stations. This concept is illustrated by the example given in Figure I. Figure

8 shows the given queueing network from Figure I decomposedinto 4 subnetworks.
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SNW " L ,

3

S,' 2W

Figure 8.

Each subetwork SNWj is analyzed by shorting all other stations in all other subnetworks, i.e., their service

times are set to zero. Since the subnetworks can be analyzed independently, this analysis can be executed in

parallel. As a result, the load dependent throughput values X(k) for each subnetwork are obtained simultane-

ously. Each subnetwork SNW, containing multiple stations can thus be composed into a single station. The com-

puted load dependent throughputs X(k) for each SNWj (for I < j < S) are set equal to the load dependent service

rates p,(k) of the respective composite station. The composite stations are serially switched and the simplified

network, shown in Figure 10, is easily analyzed when computing all relevant characteristic performance measures.

These measures are valid for each station of the originally given network model, Figure 1.

* comp.centrel' 'comp. centreV

'comp.centre4 lcomp.centre3

Figure 9.

This extended paramneric analysis is not only motivated only by the desire to accelarate the processing speed

and reduce the memory space, but also by the fact that some stations (more than one) could be studied under various

system input parameters in which the remaining subsystem is represented by a composite station containing all sta-

tions whose behavior does not interest us.

As a formal example, assume that stations I and 2 in Figure 1 represent two independent CPU's. If we wish

to investigate only these CPU's under various workload parameters, we do not need to consider the remaining sta-
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tions (3 through 12) in our computations. It is sufficient to initially analyze the remaining system computing the

composite load dependent throughput values X(k) by setting th, inea, "ervice times of both CPU's (stations 1

and 2) to zero. In this way we obtain Figure 10, in which the composite station represents stations 3 through 12.

"copos ite station"

Figure 10.
The mean service times of the CPU's (stations 1 and 2) are stated initially , while the mean service rate of

the composite station is equal to the computed load dependent throughput value X(k). This queueing network

model, Figure 10, can be used for the analysis of the stations I and 2 under various system input parameters.

The extended parametric analysis is realized in three steps:

4.1. Computation of the load dependent throughputs

4.2. Composing of Subnetworks

4.3. Analysis of Serial Order

4.1. Computation of the load dependent throughputs for the subnetworks

In order to analyze a subnetwork SNWi, we must short all stations which do not belong to that subnetwork

SNWi. We then compute the load dependent throughputs for each subnetwork SNWi for ( 1 < j < S). For the

computation of this measure we will use the algorithm proposed in section 3.1. Note that each subnetwork can be

analyzed independently from the others. The independent analysis of each subnetwork can be executed in

parallel in order to accelarate the processing speed. In the infinite capacity network case we realized this parallel

execution on 4 processorn and reached an acceleration of the computations by a factor of 3 to 3.5 [AKYL86b]. An

optimal decomposition aggregates the entire network into multiple subnetworks such that the following relation is

valid-

[Number of Subnetworks) mod n 2 (n - 1) (6)

where n is the number of processors.
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The purpose of this relation is to prevent processors from waiting on the results of other processors.

4.2. Composing of Subuetworks

We compose the stations of each subnetwork into one station. The mean service rate p, (k) of this compo-

site station is dependent on the number of jobs in the subnetwork and is given by the throughput of the compo-

site subnetwork.

p,,(k) = .svw,(k) for j = 1,...,S. (7)

These composite stations are switched serially in an arbitrary order.

The same problem occurs here arises with the capacity of each composite station. The solution of section (3.2)

will provide an answer to this problenm

4.3. Analysis of Serial Order

For the analysis of these arbitrarily ordered serially switched composite stations we apply the algorithm sug-

gested in [AKYL85c]. Note that the algorithm suggested in (AKYL85c] is applicable to Type Ia stations. However,

it can easily be extended such that other types of stations can also be analyzed.

REMARK

The Extended Parametric Analysis concept can be applied in order to simplify the computational require-

ments involved in large queueing network models with blocking. Using this concept, the large storage requirement

and the long run times of the existing algorithms, in particular of our algorithm [AKYL85c] can be reduced drasti-

cally. This is due to the fact that the one large queueing network is analyzed as multiple small independent net-

works.

The major advantage of this technique is that computational expenses are reduced if only a few stations from

the queueing network model are to be investigated under various system workloads. In this case we must determine

the throughput values of the subnetwork which contains the interesting stations. These throughput results are then

used for the analysis of the remaining subnetworks. The advantage results from the fact that the throughput values

for the remaining subnetworks are computed only once in the beginning and remain fixed under various system

workloads.

.... ....... ...... . . . . . .n nnl m uumnn nl ~ i I IEmIu
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5. Validation

Our solutions in both cases (Parametric and Extended Parametric Analysis) will be approximate. For valida-

tion all suggested formulas and the proposed algorithms must be tested and implemented. A large variety numerical

examples, including several stress tests, must be executed and then compared with simulation results. The RESQ

(SAUE81] simulation package is used to simulate the blocking networks.
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